Search results for " 20D15"

showing 2 items of 2 documents

Commuting powers and exterior degree of finite groups

2011

In [P. Niroomand, R. Rezaei, On the exterior degree of finite groups, Comm. Algebra 39 (2011), 335-343] it is introduced a group invariant, related to the number of elements $x$ and $y$ of a finite group $G$, such that $x \wedge y = 1_{G \wedge G}$ in the exterior square $G \wedge G$ of $G$. This number gives restrictions on the Schur multiplier of $G$ and, consequently, large classes of groups can be described. In the present paper we generalize the previous investigations on the topic, focusing on the number of elements of the form $h^m \wedge k$ of $H \wedge K$ such that $h^m \wedge k = 1_{H \wedge K}$, where $m \ge 1$ and $H$ and $K$ are arbitrary subgroups of $G$.

Combinatorics20J99 20D15 20D60 20C25General MathematicsMathematics - K-Theory and HomologyFOS: MathematicsHomological algebraK-Theory and Homology (math.KT)Invariant (mathematics)Exterior algebraMathematicsSchur multiplier
researchProduct

Conjugacy classes, characters and products of elements

2019

Recently, Baumslag and Wiegold proved that a finite group $G$ is nilpotent if and only if $o(xy)=o(x)o(y)$ for every $x,y\in G$ of coprime order. Motivated by this result, we study the groups with the property that $(xy)^G=x^Gy^G$ and those with the property that $\chi(xy)=\chi(x)\chi(y)$ for every complex irreducible character $\chi$ of $G$ and every nontrivial $x, y \in G$ of pairwise coprime order. We also consider several ways of weakening the hypothesis on $x$ and $y$. While the result of Baumslag and Wiegold is completely elementary, some of our arguments here depend on (parts of) the classification of finite simple groups.

Finite groupCoprime integersGeneral Mathematics010102 general mathematicsGroup Theory (math.GR)01 natural sciences010101 applied mathematicsCombinatoricsNilpotentCharacter (mathematics)Conjugacy classSolvable groupFOS: MathematicsOrder (group theory)Classification of finite simple groups0101 mathematicsMathematics - Group Theory20C15 20D15 20E45MathematicsMathematische Nachrichten
researchProduct